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Abstract

This study focuses on the creations of models that predict sig-
nal loss in Free Space Optics (FSO) and Radio Frequency (RF)
communication systems using Random Forest algorithms. FSO
systems are vulnerable to atmospheric factors such as fog and
rain. On the other hand, the RF systems are bandwidth-limited
and dependent on rain intensity. By utilising the Random Forest
algorithms, models are developed to estimate signal attenuation
in real-time based on various environmental factors. These factors
include the ones such as visibility, rainfall, and temperature. The
models are evaluated using Root Mean Square Error (RMSE) and
R-Squared metrics, which are critical part of this work. A major
insight has revealed on the use of specific and generic models that
can change the selection of models for this task. A comparison
was done based on their performance with established models.
In this case, the specific model has outperformed their generic
model in most of the cases. In some cases having improvements
as 18.96% in Dust Storm conditions, among others in FSO sys-
tems. The model also showed much lower RMSE compared to the
generic model, with as low as -69.69% in RFL systems to snow
conditions. Therefore, such better predictive models are properly
suited for this task. Therefore, it was used in this case. Results
show that the Random Forest models can provide reliable predic-
tions for signal loss. Therefore, using this approach can improve
the modelling.
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1 Introduction and Background

1.1 Introduction and Rationale

FSO and RF communication systems are critical in the modern commu-
nication landscape. FSO systems use light to transmit data through the
atmosphere. This means that the effects of the different atmospheric fea-
tures are present. This is also true for various other effects at different sit-
uations. However, these systems offer significant bandwidth advantages.
This allows for efficient communication using optics. Despite having such
a strong capability, they are highly susceptible to atmospheric attenua-
tion. These are caused by factors such as fog, rain, and turbulence (Khan
et al., 2022). On the other hand, RF systems use radio waves to transmit
data. These systems offer greater stability even when there are difficult
conditions. However, they are limited by the bandwidth capacity.

The increasing demand for reliable and high-capacity communication
systems requires the development of hybrid models. They are expected
to predict signal attenuation in both FSO and RF systems (Wu et al.,
2023). These systems should be functional under various weather condi-
tions. Many weather conditions are difficult to handle for the FSO (Free
Space Optics) model. On the other hand, some weathers the RF (Radio
Frequency) model performs well. The aim therefore becomes to check
whether such a stable model can be achieved through understanding the
different RF models. In this case, this type of model is chosen to use
Random Forest. These models are highly capable decision trees that use
advanced algorithmic capabilities to fill the gap in the understanding of
the data (Fernandes et al., 2021). These algorithms allow for finding com-
plex and nuanced patterns in the data. Thus, this study aims to fill that
gap by using Random Forest algorithms to predict attenuation levels. It
also tries and assess the impact of different variables on communication
system performance. By improving our understanding of how weather
conditions affect signal transmission, these models can help optimise the
planning.

The advancement of these technologies would allow for a more robust
and enhanced system designed to be operated in an automated manner.
This would enhance the industrial communication methods and would
enhance the businesses in the commercial markets. Currently, it is a ne-
cessity to understand the signal processing to its core as the information
is expanding at a rapid pace. Therefore, the prediction of signal atten-
uation holds an important place that will change the trajectory of the
world in a much smarter way.
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1.2 Aim, Objectives, and Research Questions

The aim of this study is to develop and evaluate predictive models for
signal attenuation in FSO and RF systems. The objectives are:

1. To identify key environmental factors affecting signal attenuation
in FSO and RF systems.

2. To create Random Forest models that can accurately predict signal
attenuation.

The main research questions are:

1. How does treating environmental factors as categorical variables
improve the predictive accuracy of signal attenuation models for
FSO and RF systems?

2. To what extent can specialised Random Forest models improve
predictive performance over generic models across diverse environ-
mental conditions?

1.3 Review of current literature

In their research, Haluška et al. (2020) focused on predicting the RSSI
(Received Signal Strength Indicator) parameter. This parameter controls
the hard switching in hybrid FSO and RF systems. This parameter is
critical in analysing the system to its fullest extent. The paper explored
different machine learning approaches related to decision trees. This is
because the decision trees are a powerful algorithm for these types of tasks
providing with higher levels of R squared values and predictive accuracies.
The decision trees and the AdaBoost regressor both was compared to
predict signal strength based on environmental conditions. Their results
indicated that the AdaBoost-enhanced decision tree method achieved
higher predictive capability than normal decision trees. However, there is
a longer required training time associated with it. Haluška et al. (2020)
also highlighted the importance of training models on diverse weather
conditions. The paper claims that it improves the prediction accuracy
of the model. The paper recommended investigating random forests and
neural networks as possible candidates to optimise hybrid FSO and RF
systems performance.

Yahia et al. (2021) proposed another hybrid RF and FSO commu-
nication strategy for satellite communications. The target of this paper
was optimising performance of the existing systems. Their paper found
that in a signal-based communication, soft-switching setup allows a LEO
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satellite to adapt its transmission power. This in turn enables the se-
lection between RF and FSO links based on weather conditions. This
switching uses a context-aware sensor system. This enables the system
to be performant in the long term. The paper used outage probability
and simulations to assess the model’s performance. Therefore, the paper
was able to demonstrate the improved power efficiency over conventional
hybrid RF and FSO systems. On the contrary, Haluška et al. (2020)
utilises context-aware switching for efficiency, which is different from the
conventional approach. Their paper highlighted the importance of using
smart switching. This method enables the system to tackle the weather
conditions. The model also showed the drastic effect the different param-
eters of the weather on the very critical parameter known as the signal
attenuation.

Lionis (2021) investigated the performance prediction of FSO systems
in maritime environments. The focus was strongly on the communica-
tion systems. The measurement of success is based on the accuracy of
various machine learning (ML) algorithms. The study utilised a large
dataset of RSSI and seven atmospheric parameters. The list of param-
eters included the wind speed, temperature, and humidity. The values
were collected over a year from a commercial FSO system and a weather
station. The paper used various commonly known algorithm, which were
k-nearest neighbours, decision trees, random forests, gradient boosting,
and ANN. This in turn allowed the system to model RSSI performance.
This contrasts with the approach of Haluška et al. (2020).

Lionis (2021) in their paper used the comparison system of RMSE
and the R-Squared. These are two of the standard metrics for such cases.
Their findings indicated that all ML models significantly outperformed
traditional regression techniques. The ANN model achieved the best re-
sult surpassing the other models in terms of RMSE and R-Squared. The
model achieved the highest R-Squared of 0.94867, which is 94.9%. This
means that the parameters in the model can explain the 94.9% variation
in the data. The random forests models yielded the best RMSE of 7.37.
The study concluded that ML methods provide a robust framework for
accurately predicting RSSI. Yahia et al. (2021) on the other hand shows
that it is more useful when predicting using the hybrid approach for
the signal attenuation on the FSO and RF systems. The paper also
showed that in complex atmospheric conditions, such ML algorithms are
extremely powerful. The paper suggested that further improvements can
be made by integrating additional data for ongoing predictions.

Esmail (2023) proposed a hybrid optical fibre and FSO communica-
tion system in their paper. This is to meet the increasing demand for
network capacity. This is driven by new digital applications and the in-
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creasing market share. This system utilises the different ML techniques.
This is specifically Gaussian Process Regression (GPR), to predict key
channel impairments. Different key features such as turbulence, optical
signal-to-noise ratio (OSNR), and chromatic dispersion (CD) are used to
build the model. Lionis (2021) shows that other models outperform re-
gression techniques in this regard, which is supported by the approach in
this paper. This shows the diverse amounts of features to be considered
for such models. The model’s performance was assessed using metrics
such as RMSE and R-squared. These are standard metrics where the
higher RMSE and R-Squared indicates higher prediction accuracy. This
is particularly true under varying channel conditions. However, the GPR
model faced challenges in accurately predicting light turbulence param-
eters.

Esmail (2023) showed that there are difficulties the model faces in
predictive capabilities in terms of different situations and conditions that
are present in the modelling. The authors compared their GPR approach
with RF and SVM models. They found that these models are equal or
more effective in most scenarios. This model can aid telecommunica-
tions operators in optimising FSO performance. This is done using the
adaptive modulation and digital signal processing techniques. Future re-
search directions they showed include predicting additional impairments
and exploring advanced methods. Lionis (2021) supports this argument
and states that in many situations these models can model complex phe-
nomena. These methods include the ones like quantum and graph neural
networks for better enhanced performance of the models.

Kaur and Sharma (2023) analysed the quality of the received signal
under various weather conditions. These conditions are like the SYNOP
Code used in the dataset. The actual conditions include clear air, low
haze, heavy haze, and light fog. ML techniques, specifically ANN and
SVM were employed to predict signal impairments at the receiving end.
The ANN model achieved impressive performance with a RMSE of 0.148
and an R-squared value of 0.98. In contrast, the linear SVM model
exhibited RMSE and R-Squared values of 0.937 and 0.76, respectively.
Lionis (2021) supports the use of ANNs and other specific models for
this purpose and highlight the benefits of using those algorithms. This
indicated it as the best-fit model for estimating the quality factor of the
received signal. This research showed the effectiveness of ML models in
predicting and validating the performance in predicting the attenuation
of the signals.

Literature Gap: There is a lack of predictive modelling using Ran-
dom Forest algorithms on the different datasets of signal attenuation.
Very few studies focus on using this algorithm and in many situations,
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they have chosen the ANNs to a more suited model. This has led to
this research choosing this segment as there is a severe gap in using RF
algorithms on the attenuation prediction for the RFL and FSO systems.
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2 Methods

This study uses different Random Forest algorithms to predict signal
attenuation in both FSO and RF systems. Random Forest is a decision
tree-based machine learning technique. It is a well-established technique
for these types of tasks where the different conditions may have indirect
effects on the outcome of the quality. Therefore, it is well-suited for non-
linear relationships and complex interactions among input features. In
this case, two main models are considered. These are the FSO and RF
models (Haluška et al., 2020). The key objective lies in understanding the
different effects of the environmental factors on the two different types
of models. Another key objective is to understand whether these effects
influence the outcome of the model’s accuracy. Therefore, for this case,
the consideration of the two models is necessary.

2.1 Feature Selection

Feature selection plays a critical role in the performance and accuracy of
both the FSO and RF models. This is because each model depends on
distinct environmental factors that directly affect the key variable signal
attenuation. This is the target variable in the dataset and is the topic of
research. In the FSO model, the focus is on visibility conditions (Nebu-
loni and Verdugo, 2022). This is due to the optical signals transmitted
in free space. The free space is always affected by factors such as fog
and humidity. These factors significantly affect how light passes through
the atmosphere. Hence, it leads to varying degrees of signal loss. Such a
severe case would be heavy fog. This can cause scattering of the optical
signal. This will result in higher attenuation. Temperature and wind
speed are also factors for such models. They also have the capability
to influence the stability of atmospheric conditions. This will further
contribute to signal loss by making the attenuation higher. In contrast,
the RF model emphasizes weather conditions such as the rainfall inten-
sity, cloud cover, wind speeds, and temperature fluctuations. Rainfall is
a particularly critical factor in RF communication. This can be ascer-
tained as water droplets can absorb and scatter RF signal. This has led
to signal degradation and attenuation. Wind speed and temperature can
also affect the signal strength. This is done by altering atmospheric den-
sity and causing diffraction (Ghoname et al., 2020). Along with that, the
amount of moisture in the air, humidity plays a role in RF attenuation.
This is truer at higher frequencies, which makes it an essential feature to
include in the model. Such a feature selection is critical. This is because
selecting features that align with the unique physical properties of both
systems, models are better equipped. These models will be able to han-
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dle the specific challenges posed by atmospheric conditions. Therefore,
the model will allow for more accurate predictions of signal attenuation.

This shows that it is extremely crucial that appropriate feature sets
are selected for both the specific and generic models. The feature sets
comprise of different factors and since, the signal mechanisms are dif-
ferent, they would impact the systems differently. The selected features
are understood from the context of the signal processing. In the con-
text of the FSO, thus the selected features consist of visibility factors,
which are understood to be affecting the FSO based attenuation in a
signal. On the other hand, the RF model requires careful selection of
cloud cover, temperature and wind speed factors. In this scenario, there
are no such factors as cloud cover and therefore, it has not been consid-
ered here. These features are selected with the approach that since, the
actual dataset consists of all the features, most of the features will not be
impactful for the purpose of the model development and therefore, such
the selected features were considered.

2.2 Dataset creation

The dataset creation step consisted of different features and ratios that
were considered for forming the different dataset parts, which were used
for the training of the models. It is essential for training the model that
randomness must be controlled and there should be a standard test size.
In this case, the test size has been consistent throughout with each model
having the test size of 0.2. This means that for the testing purposes,
each of the models will be tested on 20% of the data. This reduces
the redundant sampling and inconsistent performance across different
dimensions of the datasets (Liu et al., 2020). In this scenario, such an
approach is a necessity. It enables for developing efficient models. After
that, the randomness has been controlled in a deterministic manner. This
is done by keeping the seed same for all the operations.

This reduces the possibility of having different results each time the
comparison is done and establishes a stable modelling approach. This
approach benchmarks its data with the other standard values after the
model has completed its tasks. Then the dataset is created with sep-
arated feature sets for each of the models. This enables for creating
models that use the separated feature sets that are thought to be the
most important for the modelling part. By doing this, the models be-
come much more robust and effective (Mishra et al., 2020). Therefore,
this is vital that the model is carefully trained with appropriate data,
which was done here. The selection of the data for the model training
shows that there are factors such as the determinism. This can influence
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the model’s outcome. On the other hand, it is also essential that the
selected datasets carry the most amount of information.

2.3 SYNOP Code based model

The SYNOP (Surface Synoptic Observations) code is a standardised
system used for reporting weather observations globally. In this sys-
tem, a SYNOP code-based modelling approach is used first to determine
the accuracy of the models in specific weather conditions (Yabra et al.,
2024). There are 7 SYNOP code-based models in this consideration as
the dataset contains different SYNOP codes. Therefore, first the data
is split across 7 different sets while training and then each of these sets
are trained on a Random Forest model. Therefore, this system utilises
this standardised weather data format to predict signal attenuation in
communication systems. Hence, both the FSO and RF models are con-
sidered. The SYNOP format includes key meteorological variables such
as temperature, humidity, cloud cover, and visibility. This makes it work
like a standard model. However, in terms of predictive capability it would
be a specific model. That makes it a valuable source of data for assessing
environmental impacts on signal transmission. In this model, the relevant
SYNOP code data is ingested to train machine learning algorithms such
as Random Forests. The objective is same as predicting the signal loss
or attenuation of the two different types of models. For the FSO system,
features such as visibility and humidity used (Verdugo et al., 2023). On
the other hand, for the RF system, typical features are rainfall, and wind
speed. This separation is necessary as modelling of these two algorithms
rely on the existing knowledge. By integrating SYNOP codes, this model
benefits from specific conditional changes on the data.

2.4 Generic FSO & RF Model

The FSO model predicts signal attenuation based on key environmental
factors. These includes visibility, temperature, and wind speed. The
signal attenuation is expressed in decibels per kilometre (dB/km). Data
for these environmental variables are separated from the data source ap-
propriately. Then the model is trained on historical data to predict how
these factors affect signal strength. On the other hand, the RF model
focuses on different environmental factors. These are the strength of rain-
fall, particulates, temperature, and wind speed (Khan et al., 2021). Like
the FSO model, the RF model also predicts signal attenuation in dB/km.
The historical data used to train this model includes real-time weather
observations and signal strength measurements. This allows the model
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to capture the complex interactions between the weather conditions and
signal attenuation.

2.5 Model Evaluation

The performance of both models is evaluated using two key metrics.
These are RMSE and the R-squared.

Root Mean Square Error (RMSE): The RMSE measures the av-
erage magnitude of prediction error. It is defined mathematically as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (1)

where yi represents the observed values, ŷi represents the predicted val-
ues, and n is the total number of observations. A lower RMSE indicates
a better-performing model, as it reflects fewer errors in the predictions.

Coefficient of Determination (R2): The R2 metric measures the
proportion of variance in the dependent variable that is predictable from
the independent variables. It is computed as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2)

where ȳ is the mean of the observed values. R2 values range from 0 to 1,
with higher values indicating that the model explains a greater proportion
of the variance in the data. A well-performing model is characterized by
a higher R2.

These two are critical metrics that determine the quality of a model
that does prediction on continuous variables. RMSE provides a measure
of the average prediction error. The R-Squared indicates how closely the
predictions match the actual data and the explained variability on the
dataset. The lower the RMSE of the model, the better it has performed
on the test set. On the other hand, the higher the R-Squared, the better
the model explains variation in the original data (Chicco et al., 2021).
A lower RMSE and higher R-Squared, signify a well-performing model.
The two different model types are compared with one another and then
the better one is finalised.
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3 Results

Clear Dust Storm Fog Drizzle Rain Snow Showers
FSO RMSE 1.549 1.819 0.824 1.381 1.523 1.754 1.108
FSO R2 0.811 0.962 0.956 0.851 0.873 0.885 0.917
RFL RMSE 0.850 0.458 0.523 0.752 0.909 0.282 1.039
RFL R2 0.890 0.981 0.904 0.934 0.948 0.957 0.874

Table 1: Performance of FSO and RF Models under Different Weather
Conditions

From the Table 1, the comparison of the results between the seven
distinct random forest models and the generic model shows important
findings. The specific model reveals significant insights regarding their
predictive capability. The models have outperformed the generic random
forest model in some weather conditions. On the other hand, in some
SYNOP based categories, the generic model has performed better. This
can be attributed to specific nature of the feature values corresponding
to different conditions. For instance, the Random Forest model for FSO
in fog conditions achieved an RMSE of 0.824 and an R-Squared of 0.956.
These results are much stronger results than the generic FSO model’s
RMSE of 1.687 and R-Squared of 0.810. Here, it is critical to observe the
RMSE (Khan et al., 2022). This suggests that a model trained for specific
conditions can accurately capture the nuances of signal attenuation in
some of those conditions. However, in other conditions such as a clear
weather, the generic model provides improved performance metrics.

Generic Model
FSO RMSE 1.687
FSO R2 0.810
RF RMSE 0.897
RF R2 0.932

Table 2: Performance of Generic Model

In the table 2, it can be observed that the FSO models generally
performed better than the RFL models in terms of R-Squared values
across some weather conditions. This is a striking output, as that means
the dependencies across the different feature sets are critical for some
models. It also means that the model is sensitive to different changes,
which are majorly influential. It can be observed that the FSO model in
snow conditions achieved an R-Squared of 0.917, while the RFL model
achieved an R-Squared of 0.957. This shows that both models had com-
parable but strong predictive capabilities, with the RFL model slightly
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outperforming the FSO model. In contrast, the FSO model achieved an
R-Squared of 0.811 under clear sky conditions, whereas the RFL model
performed much better with an R-Squared of 0.890. These results for
the RFL model under clear conditions demonstrate its capability to pre-
dict effectively with a well-selected feature set (Babatunde et al., 2022).
Hence, it can be stated that without proper modeling and sufficient data,
a generic model with standard feature sets will fall short compared to an
enhanced specialist model.

Figure 1: RMSE and R-Squared values plotted for the two specific mod-
els.

The random forest models for drizzle and snow showed remarkable
results for both FSO and RFL predictions. After plotting the RMSE
and R-Squared for both the FSO and RFL models, distinctive patterns
emerge (Fig. 1). The plot shows that the FSO model demonstrates ex-
cellent R-Squared values across the board, with values as high as 0.917 in
snow conditions and 0.962 in dust storm conditions. However, the FSO
model also exhibits higher RMSE in certain scenarios, such as 1.754 in
snow conditions and 1.523 in rain conditions. On the other hand, the
RFL model demonstrates consistently lower RMSE values in challenging
weather conditions, highlighting its effectiveness. For instance, the RFL
model achieved an RMSE of 0.282 in snow conditions, significantly out-
performing the FSO model. It also achieved an R-Squared of 0.957 in
snow conditions, surpassing the performance of the generic random for-
est models. These results indicate that the RFL model’s specialized ap-
proach allows for more precise predictions in difficult weather situations,
enabling the potential use of a context-sensitive switching mechanism for
RF models. The generic random forest models, by contrast, delivered an
RMSE of 1.687 for the FSO model and 0.897 for the RF model, along
with R-Squared values of 0.810 and 0.932, respectively. These results
underscore that the generic models fall short of the predictive accuracy
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achieved by the specific models in various weather conditions. The mod-
els trained for specific SYNOP codes have consistently delivered higher
R-Squared values and lower RMSE in targeted scenarios. This adaptabil-
ity factor, as shown by the performance of the specific models, enables
more efficient switching to appropriate conditions while maintaining high
prediction accuracy (Mohamed et al., 2023). However, the use of specific
models will require more computational capabilities due to it specifically
built individual weather conditions.

Figure 2: Declining R-Squared and inclining RMSE using OOB for the
FSO model.

Figure 3: Declining R-Squared and inclining RMSE using OOB for the
RFL model.

The OOB (Out of Bag) approach applied here showcases how im-
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portant each features are. At each step in the process, first the least
important feature is removed and then a new model is trained while
keeping the R-Squared and RMSE score stored. Then the process is con-
tinued until each feature is tested. Then for the two systems, FSO and
RFL, the different scores are plotted after sorting (Fig. 2 and 3). This
helps visualise the impact of the feature removal for both conditions.

An important takeaway from these findings is the role of significant
features in improving prediction accuracy. It has been shown that fea-
ture sets are a vital piece of information for modelling the data. The
analysis of feature importance for both FSO and RFL models shows that
parameters such as wind speed, absolute humidity, and temperature are
critical to the model’s success (Samy et al., 2022). In this scenario, the
removal of wind speed and its minimum and maximum variations led to
critical outcomes. It showed a significant increase in RMSE values and
a decline in the R-Squared scores. This is true for both FSO and RFL
models. This information highlights the dependency of these models on
accurate data to predict signal attenuation. In the case of FSO models,
wind speed-related variables were most important. This shows that for
the FSO model, critical factors are the wind speed and wind related fac-
tors. Similarly, visibility and particulate-related features were significant
contributors for RF models.

The performance of the generic model, was less beneficial. The RMSE
of 1.694 was seen in FSO and an RFL RMSE of 1.701. On the other hand,
the corresponding R-Squared values of 0.808 and 0.755 was seen. This
indicates that the generic model can make predictions across all weather
conditions. However, the capability of its predictive accuracy was lower
on average than that of the specific models. This is an important infor-
mation that should be considered when considering the different condi-
tions. For a generic baseline performance, such a model can be used for
its simplicity (Kiangala and Wang, 2021). However, the generic model
failed to adapt to different diverse conditions represented by different
SYNOP codes. This resulted in lower performance metrics of R-Squared
and higher RMSE for the same predictions. This may be due to the
model’s inability to generalise across highly variable atmospheric factors.

For choosing a final model, there are various aspects that must be
considered. A final model is a type of model that is most suited for this
task. IN this scenario, it is evident that two models are performing well
in their respective conditions. For predicting signal attenuation in hybrid
FSO and RF systems, both the generic and specific models have their
strengths and weaknesses. The generic model provides the advantage of
being simpler to implement. However, it only produces output from one
trained model for all conditions. This is usually a problematic situation
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as shown here. It also suffers from lower predictive accuracy, which
is particularly problematic when working with such different weather
conditions (Hewage et al., 2021). On the other hand, the specific models
trained for individual SYNOP codes deliver more accurate predictions.
This is demonstrated by their higher R-Squared values and lower RMSE
scores across different weather conditions.

The final goal in such a situation is optimising predictive performance
of the models. In this regard, the generic model can be considered sim-
pler for this task as these two generic RF and FSO models can produce
results that are well suited. However, these results lack the consider-
ations of the nuances across different weathers and therefore, are inca-
pable of handling nuanced and complex data points. This ensures the
most reliable communication performance from the specific models being
the more suitable choice. Their ability to tailor predictions to the exact
weather conditions enables them to achieve higher accuracy (Sanober et
al., 2021). This makes them more valuable in applications where preci-
sion is critical. The generic model may still serve as a baseline. However,
due to its nature of being less-focused means it cannot be used in a highly
critical situation. This is because the output from the well suited spe-
cific Random Forest model outperforms the model. Therefore, the model
cannot compare well with the tailored insights provided by the specific
ones. Thus, the use of specific models, is recommended for both FSO
and RFL in a real-world critical situation.

Page 17 of 25



Nithin Manyamvollu Hybrid Optical and RF Communication Model

4 Discussion & Conclusion

4.1 Summarising the Main Results

Metric Clear Dust Storm Fog Drizzle Rain Snow Showers
FSO RMSE -8.17% 7.84% -51.12% -18.11% -9.68% 4.01% -34.28%
FSO R2 0.08% 18.71% 17.97% 5.00% 7.71% 9.20% 13.11%
RFL RMSE -5.20% -48.95% -41.66% -16.18% 1.34% -68.57% 15.79%
RFL R2 -4.53% 5.20% -3.03% 0.24% 1.67% 2.68% -6.22%

Table 3: Percentage Improvements of the Specific Model Compared to
Generic Model

The primary findings of the study reveal that the specific Random
Forest model trained with the SYNOP code outperforms the generic
model. From Table 3, it can be observed that for specific conditions,
such as ”Drizzle,” the specific model achieves a higher R2, which makes
it more reliable for predictions. Here, the SYNOP code is treated as a
categorical variable, allowing the specific model to capture the unique
characteristics of each weather condition effectively. The Random For-
est models trained for specific weather conditions demonstrate superior
performance across key metrics such as RMSE and R2. These metrics
are crucial for assessing the quality of models predicting continuous vari-
ables. In nearly all weather scenarios, the specific model outperformed
the generic model, as evidenced by higher R2 values and lower RMSE
for most conditions. For example, the FSO-specific model achieved a
significant RMSE improvement of -51.12% in fog conditions and an R2

improvement of 17.97% compared to the generic model. Similarly, the
RFL-specific model showed an RMSE improvement of -68.57% in snow
conditions and an R2 improvement of 2.68%.

The higher R2 values indicate that the specific models explain a
greater proportion of the variance in the dataset compared to the generic
models. This suggests that categorizing weather conditions as separate
entities rather than using a generic feature set is a more effective ap-
proach. Specific models are better suited for capturing real-world ef-
fects that may be difficult to assess in a single, generalized framework.
The adaptability of the specific models is another notable advantage.
Each model is tailored to a distinct weather condition, enabling precise
predictions across varying environmental scenarios. This flexibility al-
lows for the implementation of a context-sensitive switching mechanism,
where the system selects the most appropriate model based on prevail-
ing weather conditions. This adaptability makes specific models espe-
cially valuable for real-time and automated systems in hybrid FSO and
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RF communication networks. While the generic models performed ad-
equately, they exhibited limitations in extreme weather conditions. For
instance, under heavy fog or snow, the generic models struggled with
accuracy. This resulted in higher RMSE values. This shows the po-
tential for overfitting or underfitting of key features in a single model.
The findings suggest that leveraging specific models for different weather
conditions enhances the prediction process. However, in some cases for
achieving superior results, a generic model can be chosen across key per-
formance metrics. Although generic models may offer a broad approach,
they lack the precision and adaptability required for challenging real-
world scenarios.

Hyperparameter tuning: Hyperparameter tuning in the experi-
ment was performed using RandomizedSearchCV, a method that effi-
ciently searches the hyperparameter space to identify the optimal con-
figuration for each Random Forest model. The tuning involved 10 iter-
ations over a grid of hyperparameters, including the number of estima-
tors (n estimators), maximum depth (max depth), minimum samples per
split (min samples split), minimum samples per leaf (min samples leaf),
and bootstrap sampling (bootstrap). The search was evaluated with 5-
fold cross-validation, optimizing the negative mean squared error metric.
The tuning demonstrated the model’s ability to fit the appropriate data
effectively and efficiently. This enabled the optimisation of its perfor-
mance for each specific weather condition. Key hyperparameters for the
best models were largely consistent across weather conditions, including
a max depth of 20 and n estimators of 200. This process ensured that
each model was tailored to the specific weather condition, enhancing
predictive accuracy while preventing overfitting.

4.2 Contextualising the Results Relative to the Lit-
erature

The findings of this study align with the insights presented in the existing
literature in the RFL and FSO systems. The results indicate that spe-
cific models tailored to distinct weather conditions outperform a generic
random forest model. This is shown in the findings that the R-Squared is
much higher on average and RMSE is much lower in comparison. This ob-
servation resonates with the conclusions drawn by Haluška et al. (2020).
Their paper emphasized the critical role of environmental features in im-
proving predictive accuracy. The paper recommended to explore more
nuanced modelling approaches. This included the use of ML model like
Random Forests, which is used here. This is further validated by our find-
ings. This demonstrates that models trained on specific SYNOP codes
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yield significantly higher R-Squared values and are much more capable
of explaining the data.

The analysis finds that using separate models and switching the mod-
els is a more advantageous approach for this type of task. This is sup-
ported by Yahia et al. (2021). Their paper introduced a soft-switching
mechanism in hybrid RF and FSO systems based on weather conditions.
Their findings on the adaptability of satellite communication systems
reinforce the importance of contextual awareness. This is because for
a more accurate prediction of the signals, the model will detect better
attenuation when the appropriate model is set up. This is fully sup-
ported by the results. The tailored random forest models developed
show improved performance due to their categorical approach. Their
paper strongly emphasizes the notion of separate modelling for separate
type of weather condition as they are vastly superior for modelling.

The findings state that machine learning methods provide superior
predictive capability compared to traditional regression. This aligns with
the findings of Lionis (2021). In their paper they focused on maritime
environments, employing various machine learning algorithms to predict
RSSI. Their paper also highlights the effectiveness of Random Forests in
predicting signal quality under varying conditions. The authors obser-
vation that the ANN model achieved the best performance among ML
techniques show the importance of understanding the complex patterns
underlying the data.

The findings conclude that it is critical to use random forests for
understanding the non-linear patterns in the data. In line with this, ac-
cording to Trichili et al. (2021), the RF models in ML are some of the
most influential models in understanding the non-linear patterns inside
the data. This supports the findings of the analysis. There is a con-
stant change in the development of different ML models and therefore,
it resonates with the findings that the adaptive nature of the modelling
is crucial for success. However, in terms of the generic modelling there is
a consideration for more simplified approach is to be thought through.

The research on the findings shows the usability of the specific ran-
dom forest models as found by the predictive models developed in this
research. In this context, Esmail (2023) explored a hybrid optical fi-
bre and FSO communication system. Their paper showed the utility of
GPR in predicting channel impairments. This shows a contrasting ap-
proach of using GPR, which is a different algorithm that is chosen here.
However, the challenges faced by the GPR model suggest a limitation
in its applicability under diverse conditions. These models outperformed
the generic model in most scenarios. The emphasis on context-specific
modelling shows the need for continuous improvement in predictive capa-
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bilities. The findings indicate that there is a superior performance benefit
with tailored models. Kaur and Sharma (2023) conclude with the same
results. They analysed signal quality under various weather conditions
using ANN and SVM techniques. Their results show that the model
achieved high predictive accuracy with RMSE and R-Squared values.
The strong performance of the ANN model reflects the growing trend of
domination of the Deep Learning models in the field of machine learning,
which is contrasted using Random Forest, which is a conventional model.

The current analysis was done using a SYNOP code-based random
forest models. In this context, according to Shao et al. (2024), the
comparative analysis shows that in hybrid FSO and RF systems specific
modelling approaches are greatly beneficial. This directly supports the
analysis and findings of this research. It is evident that it can yield su-
perior performance metrics compared to generic alternatives. This show
that the importance of ML applications to FSO and RF communication
systems. This paves the way for further advancements in the field.

4.3 Limitations of the Analysis

One limitation of the study is the reliance on historical weather data.
This is since in many situations these data are not enough relevant for
modelling. These data points may fail to capture the full variability
of real-time conditions. Additionally, while the models performed well
under most conditions. The second major limitation of the analysis is
that the model takes parameters that are known to be affecting the signal
quality (Song et al., 2021). However, there can be more such factors
that may affect that and has not yet been recorded. Therefore, without
using those parameters, the signal attenuation cannot be appropriately
predicted. Lastly, there are many ML models out there and this research
focuses on the Random Forest model, which is a decision tree. However,
models such as ANNs can be a quite improvement over such models in
predicting signal attenuation.

4.4 Ideas to Overcome Limitations and Extend the
Analysis

Future work could focus on integrating real-time weather data from dif-
ferent regions to improve the correctness of the models, making it much
more viable for many different regions. Along with that, using other ML
techniques, such as deep learning can greatly enhance the quality of the
model (Henna et al., 2023). The model can be enhanced to work with
other model to make it much more capable in predicting signal attenu-
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ation. Finally, further testing with more advanced datasets could refine
the models and make it suitable for various predictive tasks.
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